
Some simple explanations for beginners

Carsten Lynker

December 2013

1 First steps programming FlyWithLua

This is more a cooking book than a real in-deep tutorial. It will give some fresh
ideas to beginners, helping to find the golden thread to run successful through a
Lua scripting adventure. So don’t forget to study the manual, especially as a
reference to all the functions used in this book.

1.1 When are my scripts running?

All scripts written in Lua (the file name ends at “.lua” and the file is inside the
“FlyWithLua/Scripts” directory) are executed once if you start X-Plane, if you
change your plane or location - or if you force FlyWithLua to reload all scripts.
This can be done by clicking the menu “Plugins” -> “FlyWithLua” -> “Reload
all Lua script files”.

1.2 A first Lua file

Start X-Plane and start a text editor (like Notepad++ or VIM). Then write the
file “hello world.lua” into the “Scripts” directory. Fill the file with these Lua
code:

logMsg("Hello World!")

Save the file with your editor and switch to X-Plane. Click on “Special” -> “Show
Dev Console”. You see some logging info from X-Plane. Now force FlyWithLua
to reload your script and watch the developer console. You will see this (and
other code from FlyWithLua):

FlyWithLua Info: Start loading script file Resources/plugins/FlyWithLua/Scripts/hello world.lua
Hello World!
FlyWithLua Info: Finished loading script file Resources/plugins/FlyWithLua/Scripts/hello world.lua

You can see, your little script does its work once during its run.

1



1.3 Setup start parameters

You can use this behavior to setup some start conditions. This can be done,
as FlyWithLua automatically runs the scripts when you change your plane or
location. So if you want to always start with cold&dark setting in X-Plane, but
have the orange beacon on by default, write a script like this:

command_once("sim/lights/beacon_lights_on")

You can still use your beacon light switch, as the script is executed once and the
command is executed only once as well. The Lua function “command_once()”
will call an X-Plane command. You will see all the commands, if you click on
“Settings” -> “Joystick & Equipment” -> “Buttons: Adv”.

1.4 DataRefs

The most exiting thing programming with FlyWithLua is, that you can read
and write DataRefs. These are X-Plane’s internal variables, representing much
more than the commands can reach. Take a look at this web page:

http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html

So let’s try the same procedure as before. Change your little script to this:

dataref("Beacons", "sim/cockpit/electrical/beacon_lights_on", "writable")
Beacons = 1

And again, all your action in X-Plane starts with beacon lights on (to be correct,
it will start the beacon when you switch the battery on). You must be careful
when using a DataRef. Not all of them can be set by a plugin. If they are
writable or not can be found in the fourth column of the official DataRef listing.

1.5 Event driven programming

You can’t only do things once when the script loads. There are Lua functions,
that allows to react on simulator events. For example when the mouse scroll
wheel is moved. Write a new script “no more zooming.lua” and fill it with this
code:

do_on_mouse_wheel("RESUME_MOUSE_WHEEL = true")

Hey, this disables the zoom on the mouse wheel. In fact this little piece of
software, a tiny one-liner, does nothing on a mouse wheel event, but resumes
the event. So the SDK’s event handler stops action and scroll wheel info never
gets to X-Plane.

2

http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html
http://www.xsquawkbox.net/xpsdk/docs/DataRefs.html


1.5.1 Doing some action on wheel movements

As killing the zoom only is a little bit boring, we will add some action. The mouse
wheel movement is represented by the variable MOUSE_WHEEL_CLICKS. We
can use this info to move the trim wheel with the mouse wheel. Use this code:

dataref("xp_elv_trim", "sim/flightmodel/controls/elv_trim", "writable")

function set_trim_by_mouse_wheel()
xp_elv_trim = xp_elv_trim - MOUSE_WHEEL_CLICKS * 0.0025
if xp_elv_trim > 1.0 then

xp_elv_trim = 1.0
end
if xp_elv_trim < -1.0 then

xp_elv_trim = -1.0
end
RESUME_MOUSE_WHEEL = true

end

do_on_mouse_wheel("set_trim_by_mouse_wheel()")

This is a little bit more complex. We first define a DataRef connection to a
variable, that allows writable access. Then we define a function, to not have
too many code to write inside the do_on_mouse_wheel() function. This is not
really a problem, it’s more a sort of ugly code.

The function sets the DataRef with the MOUSE_WHEEL_CLICKS variable as
a multiplier. As this can result in forbidden values (range from -1.0 to +1.0), we
make sure that correct values are given back to X-Plane with two if statements.

1.5.2 Graphical output

We want to see the movement of the trim when we use the mouse wheel. To
show something with Lua, it must be done with the do_every_draw() function.
So we add the code above:

function draw_trim_info()
XPLMSetGraphicsState(0,0,0,1,1,0,0)
glColor4f(1, 1, 1, 0.5)
glRectf(100, 100, 110, 300)
glBegin_LINES()
glVertex2f(90, 200 + xp_elv_trim*100)
glVertex2f(120, 200 + xp_elv_trim*100)
glEnd()

end

do_every_draw("draw_trim_info()")

3



This will show an info onto the screen. We use OpenGL functions, that are
implemented into FlyWithLua’s Lua dialect. But one thing is still stupid, the
info is shown all the time. We want it to disappear after 5 seconds. Let’s modify
the code again:

dataref("xp_elv_trim", "sim/flightmodel/controls/elv_trim", "writable")

local show_trim_info_until = 0

function set_trim_by_mouse_wheel()
xp_elv_trim = xp_elv_trim - MOUSE_WHEEL_CLICKS * 0.0025
if xp_elv_trim > 1.0 then

xp_elv_trim = 1.0
end
if xp_elv_trim < -1.0 then

xp_elv_trim = -1.0
end
RESUME_MOUSE_WHEEL = true
show_trim_info_until = os.clock() + 5

end

do_on_mouse_wheel("set_trim_by_mouse_wheel()")

function draw_trim_info()
if os.clock() < show_trim_info_until then

XPLMSetGraphicsState(0,0,0,1,1,0,0)
glColor4f(1, 1, 1, 0.5)
glRectf(100, 100, 110, 300)
glBegin_LINES()
glVertex2f(90, 200 + xp_elv_trim*100)
glVertex2f(120, 200 + xp_elv_trim*100)
glEnd()

end
end

do_every_draw("draw_trim_info()")

Now we use the Lua function os.clock() to get the time in seconds the simulator
is running. We add five to this value, to get the time in five seconds, and store
this value in a local variable. The variable must be set (and defined as local)
before the function to display it is defined and connected to the simulator’s
drawing loop. Else the first run in the drawing loop crashes the script as the
variable is unknown.

As we didn’t know if an other script set’s the OpenGL graphic state wrong for
our output, we set it to the default value with the XPLMSetGraphicsState()
function. If not, it can end in some strange behavior, if am other script disables

4



alpha for example.

1.6 Understanding custom commands

A very important feature of FlyWithLua are custom commands. Commands are
procedures offered by X-Plane or additional elements like a plane you are using.

Commands have unique names. All commands offered by X-Plane starts with
sim/ and they are visible in the joystick or keyboard configuration menu by
default. Just click on Settings -> Joysticks & Equipment and choose the tab
Buttons: Adv. Then press a joystick button, that is not assigned to a command.
You can see, that it is impossible to have no assignment. Instead the button is
assigned to sim/none/none, as you can check in the little dark info area in the
middle of the window and top right in a textbox, where you can copy&paste the
command’s name (but you can’t edit it’s name).

If you want access a command not starting with sim/, you will have to click on
the little transparent square left of the textbox. Then you can choose the first
path element – if you understand a command’s name as a name with path, like
a filename.

Every command has a unique name and a (not forced unique) description. The
description is shown in the dark info area beneeth the command’s name.

All commands provided by other software will have to use a different beginning
than sim/. These commands are called custom commands. Many free or payware
addons like additional planes deliver custom commands.

1.6.1 Creating a custom command

Now we will create a custom command to increase the OBS direction. Let’s
write a little script and name it Custom_Command_Test.lua.

require("radio")

create_command("FlyWithLua/testing/increase_OBS",
"This command increases the OBS value by one degree.",
"OBS1 = OBS1 + 1",
"",
"")

This is working, but it still has a lot of disadvantage in it.

We will examine the code first. In line no. 1 the script loads the module radio,
if it isn’t present (otherwise it will do nothing). This will define some DataRef
variables like OBS1 we need here.

5



Much more important are line 3 to 7, the create_command() function provided
by FlyWithLua. This function needs five arguments. All arguments need to be
strings (Text surrounded by quotes).

The first argument is the unique command name. in this example, we name
it FlyWithLua/testing/increase_OBS. Be aware of nameming it sim/... or
FlyWithLua will stop with an error message.

The second argument is the description of the command. Make sure to provide
a short and precise description, as the user will only have these descrition (and
the name) to guess what the command is doing.

The third argument is a string containing Lua code. This code is executed once,
when the command starts. You can see that the example command will increase
the value by one every time you press the assigned button.

The fourth and fifth argument are strings containing Lua code, that is executed
while the button (or key) is hold down (fourth argument), or when the command
ends (button or key is released). In this first example both are empty. You must
give empty strings to the function, if you want to do nothing, or you will get an
error message about missing arguments.

The last two arguments are more important as you might guess. Let’s play
around with the example in deep. If you press the assigned button again and
again, you will get higher values than 360°. This is not what you want. If you
reach 360°, it should swap to 0° to make a clean run around the OBS instrument.
Values above 360° are not usefull.

So we can use the last argument, to clean up when the command stops.

require("radio")

create_command("FlyWithLua/testing/increase_OBS",
"This command increases the OBS value by one degree.",
"OBS1 = OBS1 + 1",
"",
"OBS1 = OBS1 % 360")

The % does a modulo division and gives back the rest of the division, so 360°
will result in 0° and the next turn around the instrument can start.

Okay – so far so cool, but what about clicking and clicking and clicking when
changing bigger values. The first idea could be using the fourth argument. It
will be executed every frame as long as the assigned button or key is hold down.
So try this:

require("radio")

create_command("FlyWithLua/testing/increase_OBS",
"This command increases the OBS value by one degree.",
"",

6



"OBS1 = OBS1 + 1",
"OBS1 = OBS1 % 360")

Is this super clever? No!

You loose the ability to make small steps, as you can’t press as short as only
one frame. You will have to implement a better solution.

require("radio")
local obs_up_time = 1
local ops_up_value = 1

create_command("FlyWithLua/testing/increase_OBS",
"This command increases the OBS value by one degree.",
"obs_up_time = os.clock()\n
obs_up_value = OBS1",

"OBS1 = 5 * (os.clock() - obs_up_time) + obs_up_value",
"OBS1 = OBS1 % 360")

Wow, what’s that? First we define two local variables. This makes a script more
fast and less conflicty to other scripts. We use 1 as a random value, as a value is
necassary, but not known at this moment.

Then we use the Lua function os.clock() (yes, it’s pure Lua, not FlyWithLua).
The function os.clock() gives back the time in seconds the Lua engine is
running.

When the command starts, we will store the actual value and the time into the
local variables. Please note the special character backslash with n inside the
string. It will make a new line character to seperate the two lines of code. If
you let it away, FlyWithLua will promt an error message and stop working.

Then, with every frame the button or key is hold down, we will increase the
value of OBS by the time in seconds multiplied by 5. You can change the value
of 5 to make it fit your own needs.

Five per second is too slow? It can get even better:

require("radio")
local obs_up_time = 1
local ops_up_value = 1

create_command("FlyWithLua/testing/increase_OBS",
"This command increases the OBS value by one degree.",
"obs_up_time = os.clock() + 2\n
obs_up_value = OBS1\n
OBS1 = obs_up_value + 1",

"if os.clock() > obs_up_time then\n
OBS1 = 10 * (os.clock() - obs_up_time) + obs_up_value\n

7

http://www.lua.org/manual/5.1/manual.html#pdf-os.clock


end",
"OBS1 = OBS1 % 360")

Now we have an if statement to check if two seconds are passed. If so, we will
increase with a value multiplier of 10 (or whatever you want). The two seconds
are added when the command starts (the third argument). This helps to reduce
the math needed.

1.7 Smoothing an axis

If you have an axis that delivers jumping values, it may disturb your X-Plane
experience. So it’s time to smooth the input. Let’s see how.

1.7.1 Looking for the real values

First we want to see the real values coming from the hardware. Say we have
an axis that is jumping. The axis no. is 12 (see X-Plane’s menu for joystick
configuration to get the right axis no.).

We will use this code to display the real values. A visible string position is more
convenient that looking at naked values in DRE.

dataref("real_axis_12", "sim/joystick/joystick_axis_values", "readonly", 12)

-- show the axis
do_every_draw('draw_string(1500 * real_axis_12, 20, "hardware value", "red")')

In the code we position the text to an x-value of 0 up to 1500, as the values
delivered by X-Plane are float values from 0.0 to 1.0. You may change the value
of 1500 depending on your X-Plane window’s width.

1.7.2 Simple Moving Avarage

To smooth the signals coming from the axis, we use a simple moving avarage
calculation. The following code should be added:

local values_axis_12 = { }
for i = 1, 10 do

values_axis_12[i] = real_axis_12
end
axis_12 = real_axis_12

function calculate_axis_12()
axis_12 = real_axis_12
for i = 2, 10 do

axis_12 = axis_12 + values_axis_12[i]

8

http://en.wikipedia.org/wiki/Moving_average


values_axis_12[i-1] = values_axis_12[i]
end
values_axis_12[10] = real_axis_12
axis_12 = axis_12 / 10

end

do_every_frame("calculate_axis_12()")

-- show the smooth value
do_every_draw('draw_string(1500 * axis_12, 40, "smoothed value", "green")')

On the screen we see a more stable text “smoothed value”, as it’s position is
calculated as the mean of the last 10 values. If you use one pysics calc run on
one graphical run, then this is about half a secound when FPS is 20. If you
choose more physic calculations or use a faster hardware (CPU/GPU), then the
time period for the mean calculation may be shorter.

1.7.2.1 Creating a helper module

As the method above isn’t very smart code, we now create a module to be used
by a script. The module file must start with this line:

module(..., package.seeall);

We place the module file into the directory .../FlyWithLua/Modules/ and
name it SMA_smoothing.lua (a pure Lua module ends in “.lua”).

As Lua has no classes we can create instances from, we need a function that
creates functions by executing strings. Call it some kind of pure-mans-OOP.

function create_SMA(axis_number, samples)
-- make samples an optional argument
samples = samples or 10

-- make sure that axis_number is a string
axis_number = tostring(axis_number)

-- create the code
local code = 'dataref("real_axis_' .. axis_number
code = code .. '", "sim/joystick/joystick_axis_values", "readonly", ' .. axis_number .. ')\n'
code = code .. "local values_axis_" .. axis_number .. " = { }\n"
code = code .. "for i = 1, " .. samples .. " do\n"
code = code .. " values_axis_" .. axis_number .. "[i] = real_axis_" .. axis_number .. "\n"
code = code .. "end\n"
code = code .. "axis_" .. axis_number .. " = real_axis_" .. axis_number .. "\n\n"
code = code .. "function calculate_axis_" .. axis_number .. "()\n"
code = code .. " axis_" .. axis_number .. " = real_axis_" .. axis_number .. "\n"
code = code .. " for i = 2, " .. samples .. " do\n"

9



code = code .. " axis_" .. axis_number .. " = axis_" .. axis_number .. " + values_axis_" .. axis_number .. "[i]\n"
code = code .. " values_axis_" .. axis_number .. "[i-1] = values_axis_" .. axis_number .. "[i]\n"
code = code .. " end\n"
code = code .. " values_axis_" .. axis_number .. "[" .. samples .. "] = real_axis_" .. axis_number .. "\n"
code = code .. " axis_" .. axis_number .. " = axis_" .. axis_number .. " / " .. samples .. "\n"
code = code .. "end\n\n"
code = code .. 'do_every_frame("calculate_axis_' .. axis_number .. '()")\n'

-- execute the code
assert(loadstring(code))()

end

You find the code as an example delivered with FlyWithLua.

The script itself shrinks to this:

require("SMA_smoother")

SMA_smoother.create_SMA(12, 10)

-- show the axis
do_every_draw('draw_string(1500 * real_axis_12, 20, "hardware value", "red")')

-- show the smooth value
do_every_draw('draw_string(1500 * axis_12, 40, "smoothed value", "green")')

The modules’s function create_SMA() will create the dataref variable
real_axis_ plus the number of the axis given by the first argument. It will also
create the function to calculate the smoothed value and calls it every frame
loop. So everything you have to do after this line:

SMA_smoother.create_SMA(12, 10)

Is to use the value of the new created variable axis_ plus the number, as shown
in the last line of the example script.

10


	First steps programming FlyWithLua
	When are my scripts running?
	A first Lua file
	Setup start parameters
	DataRefs
	Event driven programming
	Doing some action on wheel movements
	Graphical output

	Understanding custom commands
	Creating a custom command

	Smoothing an axis
	Looking for the real values
	Simple Moving Avarage



